首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1213篇
  免费   459篇
  国内免费   409篇
测绘学   40篇
大气科学   736篇
地球物理   437篇
地质学   228篇
海洋学   357篇
天文学   27篇
综合类   43篇
自然地理   213篇
  2024年   3篇
  2023年   14篇
  2022年   40篇
  2021年   36篇
  2020年   75篇
  2019年   61篇
  2018年   45篇
  2017年   54篇
  2016年   56篇
  2015年   67篇
  2014年   90篇
  2013年   95篇
  2012年   95篇
  2011年   113篇
  2010年   84篇
  2009年   100篇
  2008年   78篇
  2007年   121篇
  2006年   118篇
  2005年   108篇
  2004年   97篇
  2003年   69篇
  2002年   82篇
  2001年   58篇
  2000年   44篇
  1999年   37篇
  1998年   48篇
  1997年   29篇
  1996年   31篇
  1995年   30篇
  1994年   23篇
  1993年   23篇
  1992年   13篇
  1991年   9篇
  1990年   7篇
  1989年   5篇
  1988年   9篇
  1987年   5篇
  1984年   1篇
  1982年   3篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1954年   2篇
排序方式: 共有2081条查询结果,搜索用时 109 毫秒
41.
海滩对风暴的响应及风暴后海滩的恢复过程一直以来都是国内外海滩研究的热点。本文通过对浙江舟山市朱家尖岛东沙海滩地形地貌的现场调查,对比分析了热带风暴"娜基莉"影响下东沙海滩剖面的蚀积变化,探讨了海滩在热带风暴发生后的恢复情况。结果表明,在"娜基莉"影响期间,因风暴浪为向岸浪,东沙海滩几乎遭受全线侵蚀,12个剖面单宽侵蚀总量为73.46 m3/m,其中海滩直线段较两个遮蔽段侵蚀显著。由于海滩在风暴前进方向的左侧,且"娜基莉"距东沙较远,使得东沙海滩普遍侵蚀但强度较小。东沙海滩在热带风暴后的恢复过程中,不同部位的地貌调整和冲淤变化不同,下岬角遮蔽段基本趋于稳定,直线段和上岬角遮蔽段在恢复过程中因受海滩季节性调整的影响呈现持续侵蚀。  相似文献   
42.
利用磁静日时序叠加方法和FFT频谱分析方法对红池坝地电场观测资料进行逐月处理,并与巫山建坪台地磁观测资料进行对比,分析红池坝地电场静日变化特征;计算红池坝台站磁暴期间产生的感应电场,与地电场观测数据对比,分析地电暴的特征。结果表明,静日随着月份的变化,相位发生变化,与巫山建坪地磁Sq变化一致;1月、2月、11月、12月的地电场日变幅明显小于其他月份;地电场显著周期成分与磁静日地磁场相同,并且通过周期成分的逐月对比分析得到,地电场与地磁D分量的不同周期成分的频谱值随时间的变化基本一致;某一方向的地电暴与该垂直方向的磁暴和该地区的电性结构有关;地电暴观测值与地磁感应电流计算值呈线性关系;地电暴变化与K值呈指数关系。  相似文献   
43.
In the last decades, human activity has been contributing to climate change that is closely associated with an increase in temperatures, increase in evaporation, intensification of extreme dry and wet rainfall events, and widespread melting of snow and ice. Understanding the intricate linkage between climate warming and the hydrological cycle is crucial for sustainable management of groundwater resources, especially in a vulnerable continent like Africa. This study investigates the relationship between climate‐change drivers and potential groundwater recharge (PGR) patterns across Africa for a long‐term record (1960–2010). Water‐balance components were simulated by using the PCR‐GLOBWB model and were reproduced in both gridded maps and latitudinal trends that vary in space with minima on the Tropics and maxima around the Equator. Statistical correlations between temperature, storm occurrences, drought, and PGR were examined in six climatic regions of Africa. Surprisingly, different effects of climate‐change controls on PGR were detected as a function of latitude in the last three decades (1980–2010). Temporal trends observed in the Northern Hemisphere of Africa reveal that the increase in temperature is significantly correlated to the decline of PGR, especially in the Northern Equatorial Africa. The climate indicators considered in this study were unable to explain the alarming negative trend of PGR observed in the Sahelian region, even though the Standardized Precipitation‐Evapotranspiration Index (SPEI) values report a 15% drought stress. On the other hand, increases in temperature have not been detected in the Southern Hemisphere of Africa, where increasing frequency of storm occurrences determine a rise of PGR, particularly in southern Africa. Time analysis highlights a strong seasonality effect, while PGR is in‐phase with rainfall patterns in the summer (Northern Hemisphere) and winter (Southern Hemisphere) and out‐of‐phase during the fall season. This study helps to elucidate the mechanism of the processes influencing groundwater resources in six climatic zones of Africa, even though modelling results need to be validated more extensively with direct measurements in future studies. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
44.
Simulation of quick runoff components such as surface runoff and associated soil erosion requires temporal high‐resolution rainfall intensities. However, these data are often not available because such measurements are costly and time consuming. Current rainfall disaggregation methods have shortcomings, especially in generating the distribution of storm events. The objectives of this study were to improve point rainfall disaggregation using a new magnitude category rainfall disaggregation approach. The procedure is introduced using a coupled disaggregation approach (Hyetos and cascade) for multisite rainfall disaggregation. The new procedure was tested with ten long‐term precipitation data sets of central Germany using summer and winter precipitation to determine seasonal variability. Results showed that dividing the rainfall amount into four daily rainfall magnitude categories (1–10, 11–25, 26–50, >50 mm) improves the simulation of high rainfall intensity (convective rainfall). The Hyetos model category approach (HyetosCat) with seasonal variation performs representative to observed hourly rainfall compared with without categories on each month. The mean absolute percentage accuracy of standard deviation for hourly rainfall is 89.7% in winter and 95.6% in summer. The proposed magnitude category method applied with the coupled HyetosCat–cascade approach reproduces successfully the statistical behaviour of local 10‐min rainfall intensities in terms of intermittency as well as variability. The root mean square error performance statistics for disaggregated 10‐min rainfall depth ranges from 0.20 to 2.38 mm for summer and from 0.12 to 2.82 mm for the winter season in all categories. The coupled stochastic approach preserves the statistical self‐similarity and intermittency at each magnitude category with a relatively low computational burden. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
45.
Concentration–discharge (C-Q) relationships are an effective tool for identifying watershed biogeochemical source and transport dynamics over short and long timescales. We examined stormflow C-Q, hysteresis, and flushing patterns of total suspended sediment (TSS) and soluble reactive phosphorus (SRP) in two stream reaches of a severely impaired agricultural watershed in northeastern Wisconsin, USA. The upper watershed reach—draining a relatively flat, row crop-dominated contributing area—showed predominantly anti-clockwise TSS hysteresis during storms, suggesting that particulate materials were mobilized more from distal upland sources than near- and in-channel areas. In contrast, the incised lower watershed reach produced strong TSS flushing responses on the rising limb of storm hydrographs and clockwise hysteresis, signalling rapid mobilization of near- and in-channel materials with increasing event flows. C-Q relationships for SRP showed complex patterns in both the upper and lower reaches, demonstrating largely non-linear chemodynamic C-Q behaviour during events. As with TSS, anti-clockwise SRP hysteresis in the upper reach suggested a delay in the hydrologic connectivity between SRP sources and the stream, with highly variable SRP concentrations during some events. A broad range of clockwise, anti-clockwise, and complex SRP hysteresis patterns occurred in the lower watershed, possibly influenced by in-channel legacy P stores and connection to tile drainage networks in the lower watershed area. Total suspended sediment and SRP responses were also strongly related to precipitation event characteristics including antecedent precipitation, recovery period, and precipitation intensity, highlighting the complexity of stormflow sediment and phosphorus responses in this severely impaired agricultural stream.  相似文献   
46.
Dust storm, which has a significant impact on regional air quality, is one of the most hazardous meteorological phenomena in the arid areas. Yazd province is one of the arid areas in Iran that is exposed to dust storms. In this study, two cases of dust storms of Yazd province are studied with the use of coupling numerical models and aerosol optical depth (AOD) from MODIS data. We investigated synoptic condition of such dust storms that were formed downstream of upper level through in the area by focusing on two storms, on May 24 and 25, 2014. For this purpose, a dynamic coupling of this case is done using WRF output the HYSPLIT model. This model was implemented to investigate the sources of the dust storms by calculating the back trajectories from the receptor sites. The trajectories indicated that the first and the second case storms occurred in the northeast and the south of Yazd respectively. These results also showed a good agreement with MODIS aerosol optical depth data and HYSPLIT back trajectories paths.  相似文献   
47.
In September 2008, Hurricanes Gustav and Ike generated major storm surges which impacted the Lake Pontchartrain estuary in Louisiana. This paper presents analyses of in situ measurements acquired during these storm events. The main data used in the analyses were from three bottom mounted moorings equipped with conductivity, temperature, and depth sensors, acoustic Doppler current profilers (ADCPs), and a semi-permanent laterally mounted horizontal acoustic Doppler profiler (ADP). These moorings were deployed in the three major tidal channels that connect Lake Pontchartrain with the coastal ocean. A process similar to tidal straining was observed: the vertical shear of the horizontal velocity was negligible during the inundation stage, but a shear of 0.8 m/s over a less than 5 m water column was recorded during the receding stage, 2–3 times the normal tidal oscillations. The surge reached its peak in the Industrial Canal 1.4–2.1 h before those in the other two channels. The inward flux of water lasted for a shorter time period than that of the outward flux. The inward flux was also observed to have much smaller magnitude than the outward flux (∼960–1200 vs. 2100–3100 million m3). The imbalance was believed to have been caused by the additional water into Lake Pontchartrain through some small rivers and inundation over the land plus rainfall from the hurricanes. The flux through the Industrial Canal was 8–12%, while the flux through the other two tidal passes ranged between 17% and 70% of the total, but mostly split roughly half-half of the remaining (∼88–92% of the total).  相似文献   
48.
The tropical storm day(TSD)is a combined measure of genesis and lifespan.It reflects tropical cyclone(TC)overall activity,yet its variability has rarely been studied,especially globally.Here we show that the global total TSDs exhibit pronounced interannual(3-6 years)and decadal(10 years)variations over the past five-to-six decades without a significant trend.The leading modes of the interannual and decadal variability of global TSD feature similar patterns in the western Pacific and Atlantic,but different patterns in the Eastern Pacific and the Southern Indian Ocean.The interannual and decadal leading modes are primarily linked to El Ni?o-Southern Oscillation(ENSO)and Pacific Decadal Oscillation(PDO),respectively.The TSDs-ENSO relationship has been steady during the entire 55-year period,but the TSDs-PDO relationship has experienced a breakdown in the 1980 s.We find that the decadal variation of TSD in the Pacific is associated with the PDO sea surface temperature(SST)anomalies in the tropical eastern Pacific(PDO-E),while that in the Atlantic and the Indian Ocean is associated with the PDO SST anomalies in the western Pacific(PDO-W).However,the PDO-E and PDO-W SST anomalies are poorly coupled in the 1980 s,and this"destructive PDO"pattern results in a breakdown of the TSDs-PDO relationship.The results here have an important implication for seasonal to decadal predictions of global TSD.  相似文献   
49.
In this study,a coupled tide-surge-wave model was developed and applied to the South Yellow Sea.The coupled model simulated the evolution of storm surges and waves caused by extreme weather events,such as tropical cyclones,cold waves,extratropical cyclones coupled with a cold wave,and tropical cyclones coupled with a cold wave.The modeled surge level and significant wave height matched the measured data well.Simulation results of the typhoon with different intensities revealed that the radius to the maximum wind speed of a typhoon with 1.5 times wind speed decreased,and its influence range was farther away from the Jiangsu coastal region;moreover,the impact on surge levels was weakened.Thereafter,eight hypothetical typhoons based on Typhoon Chan-hom were designed to investigate the effects of varying typhoon tracks on the extreme value and spatial distribution of storm surges in the offshore area of Jiangsu Province.The typhoon along path 2 mainly affected the Rudong coast,and the topography of the Rudong coast was conducive to the increase in surge level.Therefore,the typhoon along path 2 induced the largest surge level,which reached up to 2.91 m in the radial sand ridge area.The maximum surge levels in the Haizhou Bay area and the middle straight coastline area reached up to 2.37 and 2.08 m,respectively.In terms of typhoons active in offshore areas,the radial sand ridge area was most likely to be threatened by typhoon-induced storm surges.  相似文献   
50.
Extreme water levels are related to astronomical tides and storm surges.Eleven typhoon systems,which have caused extreme water level rises,were selected based on 60-yr water level data from the Xiamen tide gauge station.In these 11 typhoon systems,the astronomical tide component accounts for 71%-95%of the total water level.The Gumbel distribution of extreme water level rise was estimated,and the impact of typhoon surges on water levels during the return period was analyzed.The ex-treme tide levels caused by typhoons Herb(1996)and Dujuan(2015)are much higher than those of other typhoons and correspond to the return period of 76 yr and 71 yr,respectively.The differences of sea levels in the presence and absence of these two typhoons in the 10-100 yr return period are 5.8-11.1 cm.For the 100-yr return period,the total risks within 10,25,50,and 100 yr increase by 94.3%,85.4%,72.9%,and 54.4%,respectively,if the Herb and Dujuan are not considered.Assuming that typhoon Herb(1996)occurred during the highest astronomical tide,it will produce a water level higher than that of the 1000-yr return period.Sea level rise has an important influence on the water level return period,and the contribution of nonlinear sea level rise in the next 100 yr is estimated to be 10.34%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号